a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
a__half(0) → 0
a__half(s(0)) → 0
a__half(s(s(X))) → s(a__half(mark(X)))
a__half(dbl(X)) → mark(X)
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(half(X)) → a__half(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)
a__half(X) → half(X)
↳ QTRS
↳ DependencyPairsProof
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
a__half(0) → 0
a__half(s(0)) → 0
a__half(s(s(X))) → s(a__half(mark(X)))
a__half(dbl(X)) → mark(X)
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(half(X)) → a__half(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)
a__half(X) → half(X)
MARK(half(X)) → A__HALF(mark(X))
MARK(first(X1, X2)) → A__FIRST(mark(X1), mark(X2))
A__SQR(s(X)) → MARK(X)
MARK(sqr(X)) → A__SQR(mark(X))
MARK(dbl(X)) → A__DBL(mark(X))
MARK(add(X1, X2)) → MARK(X2)
MARK(first(X1, X2)) → MARK(X2)
MARK(recip(X)) → MARK(X)
A__FIRST(s(X), cons(Y, Z)) → MARK(Y)
A__SQR(s(X)) → A__SQR(mark(X))
MARK(terms(X)) → MARK(X)
MARK(first(X1, X2)) → MARK(X1)
A__ADD(0, X) → MARK(X)
MARK(terms(X)) → A__TERMS(mark(X))
A__ADD(s(X), Y) → A__ADD(mark(X), mark(Y))
A__DBL(s(X)) → MARK(X)
MARK(add(X1, X2)) → A__ADD(mark(X1), mark(X2))
MARK(cons(X1, X2)) → MARK(X1)
MARK(dbl(X)) → MARK(X)
A__HALF(s(s(X))) → A__HALF(mark(X))
MARK(sqr(X)) → MARK(X)
A__SQR(s(X)) → A__ADD(a__sqr(mark(X)), a__dbl(mark(X)))
MARK(half(X)) → MARK(X)
A__ADD(s(X), Y) → MARK(X)
A__HALF(dbl(X)) → MARK(X)
A__TERMS(N) → MARK(N)
MARK(s(X)) → MARK(X)
MARK(add(X1, X2)) → MARK(X1)
A__HALF(s(s(X))) → MARK(X)
A__ADD(s(X), Y) → MARK(Y)
A__DBL(s(X)) → A__DBL(mark(X))
A__TERMS(N) → A__SQR(mark(N))
A__SQR(s(X)) → A__DBL(mark(X))
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
a__half(0) → 0
a__half(s(0)) → 0
a__half(s(s(X))) → s(a__half(mark(X)))
a__half(dbl(X)) → mark(X)
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(half(X)) → a__half(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)
a__half(X) → half(X)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
MARK(half(X)) → A__HALF(mark(X))
MARK(first(X1, X2)) → A__FIRST(mark(X1), mark(X2))
A__SQR(s(X)) → MARK(X)
MARK(sqr(X)) → A__SQR(mark(X))
MARK(dbl(X)) → A__DBL(mark(X))
MARK(add(X1, X2)) → MARK(X2)
MARK(first(X1, X2)) → MARK(X2)
MARK(recip(X)) → MARK(X)
A__FIRST(s(X), cons(Y, Z)) → MARK(Y)
A__SQR(s(X)) → A__SQR(mark(X))
MARK(terms(X)) → MARK(X)
MARK(first(X1, X2)) → MARK(X1)
A__ADD(0, X) → MARK(X)
MARK(terms(X)) → A__TERMS(mark(X))
A__ADD(s(X), Y) → A__ADD(mark(X), mark(Y))
A__DBL(s(X)) → MARK(X)
MARK(add(X1, X2)) → A__ADD(mark(X1), mark(X2))
MARK(cons(X1, X2)) → MARK(X1)
MARK(dbl(X)) → MARK(X)
A__HALF(s(s(X))) → A__HALF(mark(X))
MARK(sqr(X)) → MARK(X)
A__SQR(s(X)) → A__ADD(a__sqr(mark(X)), a__dbl(mark(X)))
MARK(half(X)) → MARK(X)
A__ADD(s(X), Y) → MARK(X)
A__HALF(dbl(X)) → MARK(X)
A__TERMS(N) → MARK(N)
MARK(s(X)) → MARK(X)
MARK(add(X1, X2)) → MARK(X1)
A__HALF(s(s(X))) → MARK(X)
A__ADD(s(X), Y) → MARK(Y)
A__DBL(s(X)) → A__DBL(mark(X))
A__TERMS(N) → A__SQR(mark(N))
A__SQR(s(X)) → A__DBL(mark(X))
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
a__half(0) → 0
a__half(s(0)) → 0
a__half(s(s(X))) → s(a__half(mark(X)))
a__half(dbl(X)) → mark(X)
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(half(X)) → a__half(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)
a__half(X) → half(X)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ QDPOrderProof
A__SQR(s(X)) → MARK(X)
MARK(first(X1, X2)) → A__FIRST(mark(X1), mark(X2))
MARK(half(X)) → A__HALF(mark(X))
MARK(sqr(X)) → A__SQR(mark(X))
MARK(dbl(X)) → A__DBL(mark(X))
MARK(add(X1, X2)) → MARK(X2)
MARK(first(X1, X2)) → MARK(X2)
MARK(recip(X)) → MARK(X)
MARK(terms(X)) → MARK(X)
A__SQR(s(X)) → A__SQR(mark(X))
A__FIRST(s(X), cons(Y, Z)) → MARK(Y)
MARK(first(X1, X2)) → MARK(X1)
A__ADD(0, X) → MARK(X)
MARK(terms(X)) → A__TERMS(mark(X))
A__ADD(s(X), Y) → A__ADD(mark(X), mark(Y))
A__DBL(s(X)) → MARK(X)
MARK(add(X1, X2)) → A__ADD(mark(X1), mark(X2))
MARK(cons(X1, X2)) → MARK(X1)
MARK(dbl(X)) → MARK(X)
A__HALF(s(s(X))) → A__HALF(mark(X))
MARK(sqr(X)) → MARK(X)
A__SQR(s(X)) → A__ADD(a__sqr(mark(X)), a__dbl(mark(X)))
MARK(half(X)) → MARK(X)
A__ADD(s(X), Y) → MARK(X)
A__HALF(dbl(X)) → MARK(X)
A__TERMS(N) → MARK(N)
MARK(add(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
A__HALF(s(s(X))) → MARK(X)
A__ADD(s(X), Y) → MARK(Y)
A__TERMS(N) → A__SQR(mark(N))
A__DBL(s(X)) → A__DBL(mark(X))
A__SQR(s(X)) → A__DBL(mark(X))
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
a__half(0) → 0
a__half(s(0)) → 0
a__half(s(s(X))) → s(a__half(mark(X)))
a__half(dbl(X)) → mark(X)
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(half(X)) → a__half(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)
a__half(X) → half(X)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
A__SQR(s(X)) → MARK(X)
MARK(first(X1, X2)) → A__FIRST(mark(X1), mark(X2))
MARK(dbl(X)) → A__DBL(mark(X))
MARK(add(X1, X2)) → MARK(X2)
MARK(first(X1, X2)) → MARK(X2)
MARK(terms(X)) → MARK(X)
A__SQR(s(X)) → A__SQR(mark(X))
A__FIRST(s(X), cons(Y, Z)) → MARK(Y)
MARK(first(X1, X2)) → MARK(X1)
A__ADD(0, X) → MARK(X)
A__ADD(s(X), Y) → A__ADD(mark(X), mark(Y))
A__DBL(s(X)) → MARK(X)
MARK(add(X1, X2)) → A__ADD(mark(X1), mark(X2))
MARK(dbl(X)) → MARK(X)
A__HALF(s(s(X))) → A__HALF(mark(X))
MARK(sqr(X)) → MARK(X)
A__SQR(s(X)) → A__ADD(a__sqr(mark(X)), a__dbl(mark(X)))
MARK(half(X)) → MARK(X)
A__ADD(s(X), Y) → MARK(X)
A__HALF(dbl(X)) → MARK(X)
A__TERMS(N) → MARK(N)
MARK(add(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
A__HALF(s(s(X))) → MARK(X)
A__ADD(s(X), Y) → MARK(Y)
A__DBL(s(X)) → A__DBL(mark(X))
A__SQR(s(X)) → A__DBL(mark(X))
Used ordering: Combined order from the following AFS and order.
MARK(half(X)) → A__HALF(mark(X))
MARK(sqr(X)) → A__SQR(mark(X))
MARK(recip(X)) → MARK(X)
MARK(terms(X)) → A__TERMS(mark(X))
MARK(cons(X1, X2)) → MARK(X1)
A__TERMS(N) → A__SQR(mark(N))
[ASQR1, sqr1, terms1, ATERMS1, asqr1, aterms1] > [dbl1, adbl1] > s1 > [first2, AFIRST1, afirst2] > nil
[ASQR1, sqr1, terms1, ATERMS1, asqr1, aterms1] > [dbl1, adbl1] > s1 > [half1, AHALF1, 0, ahalf1] > nil
[ASQR1, sqr1, terms1, ATERMS1, asqr1, aterms1] > [dbl1, adbl1] > s1 > AADD2
[ASQR1, sqr1, terms1, ATERMS1, asqr1, aterms1] > [add2, aadd2] > s1 > [first2, AFIRST1, afirst2] > nil
[ASQR1, sqr1, terms1, ATERMS1, asqr1, aterms1] > [add2, aadd2] > s1 > [half1, AHALF1, 0, ahalf1] > nil
[ASQR1, sqr1, terms1, ATERMS1, asqr1, aterms1] > [add2, aadd2] > s1 > AADD2
dbl1: [1]
first2: [2,1]
afirst2: [2,1]
AFIRST1: [1]
0: multiset
AADD2: [1,2]
ATERMS1: [1]
aadd2: [1,2]
nil: multiset
adbl1: [1]
aterms1: [1]
half1: [1]
ahalf1: [1]
ASQR1: [1]
sqr1: [1]
terms1: [1]
add2: [1,2]
s1: [1]
AHALF1: [1]
asqr1: [1]
mark(nil) → nil
a__add(X1, X2) → add(X1, X2)
mark(dbl(X)) → a__dbl(mark(X))
a__half(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__half(s(0)) → 0
a__first(0, X) → nil
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__add(0, X) → mark(X)
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(half(X)) → a__half(mark(X))
a__half(dbl(X)) → mark(X)
a__terms(X) → terms(X)
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
a__sqr(X) → sqr(X)
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
mark(terms(X)) → a__terms(mark(X))
a__sqr(0) → 0
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__dbl(0) → 0
mark(0) → 0
a__dbl(X) → dbl(X)
mark(sqr(X)) → a__sqr(mark(X))
mark(s(X)) → s(mark(X))
a__half(s(s(X))) → s(a__half(mark(X)))
a__first(X1, X2) → first(X1, X2)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
mark(recip(X)) → recip(mark(X))
a__half(X) → half(X)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
MARK(half(X)) → A__HALF(mark(X))
MARK(sqr(X)) → A__SQR(mark(X))
MARK(terms(X)) → A__TERMS(mark(X))
A__TERMS(N) → A__SQR(mark(N))
MARK(recip(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
a__half(0) → 0
a__half(s(0)) → 0
a__half(s(s(X))) → s(a__half(mark(X)))
a__half(dbl(X)) → mark(X)
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(half(X)) → a__half(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)
a__half(X) → half(X)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
MARK(recip(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
a__half(0) → 0
a__half(s(0)) → 0
a__half(s(s(X))) → s(a__half(mark(X)))
a__half(dbl(X)) → mark(X)
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(half(X)) → a__half(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)
a__half(X) → half(X)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(recip(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
cons2 > [MARK1, recip1]
recip1: [1]
MARK1: [1]
cons2: [2,1]
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
a__half(0) → 0
a__half(s(0)) → 0
a__half(s(s(X))) → s(a__half(mark(X)))
a__half(dbl(X)) → mark(X)
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(half(X)) → a__half(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)
a__half(X) → half(X)